

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

Nmr Characterization of Novel Purine Nucleoside Analogues with 2,3-Epoxypropyl Or 3-Amino-2-Hydroxypropyl Moiety

S. Raić-Malić^a; D. Vikić-Topić^b; M. Mintas^a

^a Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, Zagreb ^b Ruder Bošković Institute, NMR Center, Zagreb, Croatia

To cite this Article Raić-Malić, S. , Vikić-Topić, D. and Mintas, M.(1999) 'Nmr Characterization of Novel Purine Nucleoside Analogues with 2,3-Epoxypropyl Or 3-Amino-2-Hydroxypropyl Moiety', *Spectroscopy Letters*, 32: 4, 649 — 660

To link to this Article: DOI: 10.1080/00387019909350014

URL: <http://dx.doi.org/10.1080/00387019909350014>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

NMR CHARACTERIZATION OF NOVEL PURINE NUCLEOSIDE
ANALOGUES WITH 2,3-EPOXYPROPYL OR 3-AMINO-2-
HYDROXYPROPYL MOIETY

Key words: *Purine Nucleoside Analogues, One- and Two-dimensional ^1H and ^{13}C*

NMR Correlation Spectroscopy

S. Raić-Malić^a, D. Vikić-Topić^b and M. Mintas^a

^a Department of Organic Chemistry, Faculty of Chemical Engineering and Technology,

Marulićev trg 20, POB 177, HR-10000 Zagreb;

^b Ruđer Bošković Institute, NMR Center, Bijenička cesta 54,

POB 1016, HR-10001 Zagreb, Croatia

ABSTRACT

The structures of the title compounds were determined from their ^1H and ^{13}C NMR on the basis of chemical shifts, substituent induced shifts, H-H and C-H coupling constants, as well as connectivities in COSY, NOESY and HETCOR spectra. It has

been established that the purine skeleton is substituted at either *N*-9 or both *N*-9 and *N*-6 positions.

INTRODUCTION

Purine and pyrimidine nucleoside analogues have been of manifold pharmacological interest. Thus, a number of purine nucleoside analogues have shown potent antiviral activity, particularly against human immunodeficiency virus (HIV).¹ Some epoxide (*N*-glycidyl) derivatives of purine have been found to possess pronounced effect against P388 lymphocytic leukemia cells.² Furthermore, glycidyl ethers are used in the synthesis of drugs for the treatment of cardiovascular diseases.³

Searching for the compounds chemically related to such classes of compounds and related to our previous studies on acyclonucleosides⁴⁻⁶ we have prepared the novel purine nucleoside analogues which contain 2,3-epoxypropyl (**1-4**) or 3-amino-2-hydroxypropyl (**5-11**) side-chains (SCHEME).⁷

It was found that 2,3-epoxypropyl ether derivative (**4**) and both compounds **4** and 2-hydroxy-3-isopropylaminopropyl derivative (**11**) showed inhibitory effect on growth of human malignant pancreatic carcinoma (*MiaPaCa2*) and B lymphocyte leukemia (*Raji*) cells, respectively.⁷ We report here structure elucidation of those compounds performed using ¹H and ¹³C NMR spectroscopy.

EXPERIMENTAL

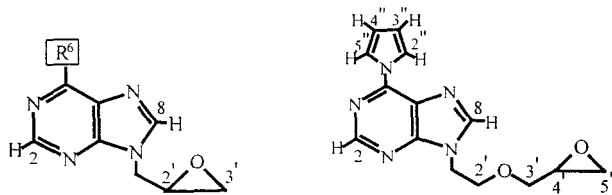
The ¹H and ¹³C one- and two-dimensional NMR spectra of compounds **1-11** were recorded on a Varian Gemini 300 spectrometer, operating at 75.46 MHz for the ¹³C

resonance. The samples were dissolved in DMSO-*d*₆ and measured at 21 °C in 5 mm NMR tubes. The ¹H and ¹³C chemical shift values (in ppm) are referred to TMS. Digital resolution in ¹H spectra was 0.28 Hz per point, while in ¹³C spectra it was 0.70 Hz per point. The techniques used were the following: standard ¹H and ¹³C (broadband proton decoupling), normal and inverse ¹³C gated proton decoupling, APT, COSY, long-range COSY (delayed COSY with delay time of 0.2 s), NOESY and HETCOR.

The COSY and long-range COSY spectra were measured with a second pulse of 45° in magnitude mode with 1024 points in the F2 dimension and 256 increments in the F1 dimension, subsequently zero-filled to 1024 points. Each increment was recorded with 16 scans, relaxation delay of 1 s and 4500 Hz spectral width. The digital resolution was 8.9 Hz/point and 17.6 Hz/point in the F2 and F1 dimensions, respectively. The NOESY spectra were recorded under the same conditions as COSY spectra, but in phase-sensitive mode with the second pulse of 90° and mixing times in the range from 0.45 s to 0.80 s. The HETCOR spectra were recorded with 2048 points in the F2 dimension and 256 increments in the F1 dimension, which were zero-filled to 512 points. Increments were measured with 80 scans, relaxation delays of 1.2 s and spectral width of 19000 Hz in the F2 and 4500 Hz in the F1 dimensions, respectively. The digital resolution was 18.6 Hz/point for the F2 and 17.6 Hz/point for the F1 dimension. In all experiments the proton decoupling was performed using Waltz-16 modulation.

RESULTS AND DISCUSSION

¹H and ¹³C NMR analysis


The ¹H and ¹³C NMR spectra have shown that the substitution of the purine skeleton took place at N-9 or at both N-9 and N-6 positions. This was concluded from

the pattern of chemical and substituent shifts and on the basis of magnitude and multiplicity of H-H and C-H spin-spin coupling constants. Two-dimensional homo- and heteronuclear correlated spectra (COSY, NOESY, and HETCOR) corroborated these findings. The formation of theoretically possible N-1, N-3 and N-7 regioisomers was not observed. The ¹H NMR data of **1-11** are collected in TABLES 1 and 2. The general characteristic of ¹H NMR spectra is, that the H-2 (8.81-8.14 ppm) is more deshielded than the H-8 (8.67-7.97 ppm). This is a common feature in the N-9 substituted purine derivatives, whereas in the N-7 ones the H-8 is more deshielded than H-2. It is also in agreement with the previously reported results for other purine nucleoside analogues alkylated at the N-9 position.⁴⁻⁶ The greater chemical shift of the H-2 than H-8 could be seen in FIG. 1, which displays the HETCOR spectrum of **2**.

The ¹H and ¹³C NMR spectra of compounds **1-4** confirmed that these molecules contain oxirane ring in a side-chain attached at N-9 of the purine ring. The ¹H data (TABLE 1) show nonequivalency of methylene protons, which is slightly greater for O-CH_AH_B than for N-CH_AH_B protons. This is due to the effect of the oxirane ring upon the rotation of the side-chain. In addition, the N-methylene protons are more deshielded (4.67-4.25 ppm) than the O-methylene ones (3.81-2.51 ppm). The chemical shift of methine proton and H-8 are very sensitive to the type of the side-chain bearing oxirane ring. In **2**, with shorter side-chain, these protons are more deshielded than in **4**, which contains longer side-chain. For example, the H-8 is at 8.60 ppm in **2** and at 8.18 ppm in **4**, while methine proton is at 3.48 ppm in **2** and at 3.10 ppm in **4**. The chemical shifts of methine proton, H-2 and H-8 depend also on the nature of the substituent at C-6. In TABLE 1 a slight increase of these shifts can be seen, in a sequence from amino to chlorine substituent.

TABLE 1

¹H NMR chemical shifts (δ /ppm)^a and H-H coupling constants (J /Hz) for compounds **1-4** (c.f. SCHEME).

1-3**4**

Comp.		1b	2b	3	4b
H-2	δ	8.15(s, 1H)	8.76(s, 1H)	8.81(s, 1H)	8.70(s, 1H)
H-8	δ	8.06(s, 1H)	8.60(s, 1H)	8.67(s, 1H)	8.18(s, 1H)
CH₂N	δ	4.45(1H) J 14.65;3.36(dd)	4.64(1H) J 14.81;3.3(dd)	4.65(1H) J 14.8;3.51(dd)	4.49(2H) J 4.77(t)
H-2'	δ	3.38(1H) (m)	3.48(1H) (m)	3.46(1H) (m)	3.91(2H) (m)
H-3'	δ	2.79(1H) J 4.27(d)	2.84(1H) J 4.26(t)	2.83(1H) J 4.43(t)	3.81(1H) J 11.52;2.53(dd)
H-3'	δ	2.51(1H) J 4.18;2.39(dd)	2.58(1H) J 4.58;2.44(dd)	2.57(1H) J 4.58;2.44(dd)	3.35(1H) J 11.79;6.18(dd)
H-4'	δ	-	-	-	3.10(1H) (m)
H-5'	δ	-	-	-	2.78(1H) J 4.77;4.21(dd) 2.55(1H) J 4.91;2.67(dd)

^a DMSO-*d*₆ solutions, chemical shifts referred to TMS. Multiplicity of coupling and number of protons are given in the brackets: s = singlet, d = doublet, t = triplet, m = multiplet, digital resolution ± 0.28 Hz.

^b Signals for NH₂ group at 8.27 ppm (s, 2H) in **1** and for pyrrolo ring: H-2",5" at 8.3 ppm (2H), J=2.3 Hz (t); H-3",4" at 6.4 ppm (2H), J=2.2 Hz (t) in **2** and **4**.

TABLE 2

¹H NMR chemical shifts (δ /ppm)^a and H-H coupling constants (J /Hz) for compounds 5-11 (c.f. SCHEME).

5-11

Comp.	5b	6b	7b	8b	9b	10b	11b
H-2	δ 8.75(s, 1H) J 8.56(s, 1H)	8.15(s, 1H) 8.10(s, 1H)	8.75(s, 1H) 8.56(s, 1H)	8.26(s, 1H) 7.97(s, 1H)	8.74(s, 1H) 8.60(s, 1H)	8.73(s, 1H) 8.54(s, 1H)	8.21(s, 1H) 8.10(s, 1H)
H-8							
CH₂N	δ 4.34(2H) J 10.55(d)	4.24(1H) 13.48(d)	4.50(1H) 11.6(d)	4.42(1H) 13.43(d)	4.49(1H) 13.65;2.55(dd)	4.61(1H) (m)	4.34(2H) (m)
	δ 4.07(1H) J (m)	4.18(1H) 8.20(d)	4.22(1H) 13.58;8.09(dd)	4.16(1H) 13.50;8.40(dd)	4.41(1H) (m)		
H-2'	δ 4.03(1H) J (m)	3.92(1H) (m)	4.12(1H) (m)	4.40(1H) (m)	4.07(1H) (m)	4.40(1H) (m)	4.18(1H) (m)
H-3'	δ 2.67(2H) J (m)	2.69(2H) (m)	2.66(b, 2H) (m)	2.70(2H) (m)	2.61(2H) (m)	3.28-3.19(2H) (m)	3.30(2H) (m)
H-4'	δ 2.67(4H) J (m)	2.5(1H) (m)	2.66(b, 4H) (m)	2.63-2.51 (1H) 0.97(s, 3H)	2.51(s, 4H) -	3.28-3.19(4H) (m)	3.07(1H) (m)
CH₃	δ 1.01(6H) J 7.03(t)	0.97(6H) 5.28(t)	1.10 (6H) 6.87(t)	0.99(s, 3H) 0.97(s, 3H)		1.46(6H) 7.18(t) 1.36;1.30(6H) 7.31(t);7.18(t)	1.24(6H) 9.96(d) 1.22(6H) 6.23(d)

^a DMSO-*d*₆ solutions, chemical shifts referred to TMS. Multiplicity of coupling and number of protons are given in the brackets: s = singlet, d = doublet, t = triplet, m = multiplet, b = broad signal, digital resolution ± 0.28 Hz.

^b Signals for amino group at *ca.* 7.2 ppm (s, 2H) in 5 and 6 pyrrolo ring: H-2",5" at *ca.* 8.3 ppm (s, 2H) and H-3",4" at *ca.* 6.4 ppm (s, 2H) in 7, 8 and 9 and for NH at 7.55 and 8.90 ppm in 11. Signals of OH groups and other NH protons are overlapped.

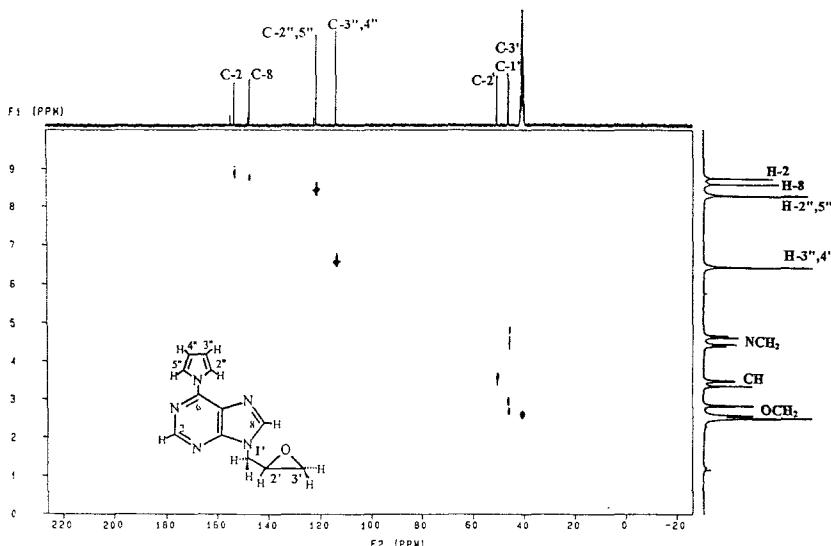
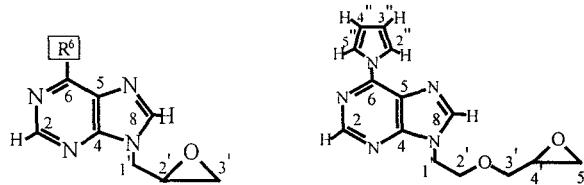


FIG 1. The ^1H - ^{13}C heteronuclear correlated (HETCOR) spectrum of compound 2.

The NOESY spectrum of **2** shows the cross-peak between H-8 and one of the N-methylene protons (H-1').

The ^1H NMR spectra of 3-amino-2-hydroxypropyl derivatives of purine nucleoside analogues (**5-11**) show, beside signals of purine moiety, five or six additional groups of signals. The ^1H NMR data for **5-11** are displayed in TABLE 2.


The substituent effect of the side-chain $\text{N}(\text{C}_2\text{H}_5)_2$ group on H-2 and H-8 is greater than the substituent effect of the $\text{NHCH}(\text{CH}_3)_2$ group. Therefore, these protons are more deshielded in **5** than in **6**. The same behavior was found in **7** and **8**, as well. Since observed substituent effects are of long range they probably arise due to combined action of inductive and resonance influence of the N-9 substituted group on purine skeleton. In addition, the bulkiness of side-chain has to be taken into account as well.

The ¹H NMR spectra of **10** and **11** showed that substitution took place at both the N-9 and the N-6 sites, *i.e.* two separated side-chains exist. This was substantiated by COSY and NOESY spectra, where two independent spin subsystems were resolved. One has to note that substituent effect of the N(C₂H₅)₂ group at the H-2 and H-8 sites is greater in **10** than the one of the NHCH(CH₃)₂ group in **11**. As mentioned before the same substituent effects were found for **5/6** and **7/8** pairs.

The ¹³C NMR data for **1-11** are collected in TABLES 3 and 4. The ¹³C chemical shifts and one-bond C-H coupling constants of the compounds **1-4** and **5-9**, as well as **10** and **11** are completely in agreement with substitution in the N-9,^{4,5} and both the N-9 and the N-6 positions,⁶ respectively. The general feature of ¹³C NMR spectra is that the C-2 is always more deshielded than the C-8, while the magnitude of the one-bond C-H coupling constant at the C-2 is always lower (*ca.* 200-205 Hz) than at the C-8 (*ca.* 210-215 Hz). The ¹³C{¹H} gated decoupled spectra of the purine moiety show doublet for the C-2 and doublet of triplets for the C-8 resonances, which is in accord with substitution at either N-9 or N-7, but not at the N-1 or N-3 sites of the purine ring. The N-7 substitution was disregarded on the basis of chemical shifts and magnitudes of one-bond C-H coupling constants.^{4,6} The additional triplet splitting at the C-8 arises from three-bond C-H coupling with two N-methylene protons of the acyclic residue at the N-9, which was confirmed by comparison with C-H coupled spectrum of the parent molecule 6-(*N*-pyrrolyl)purine, where only a doublet for the C-8 was observed. In **1-4** (TABLE 3) the greatest substituent effect (SCS) of the oxirane side-chain was observed at the C-8, ranging from 1.35 to 2.05 ppm, while the lowest SCS was found at the C-2, ranging from -0.07 to 0.18 ppm.

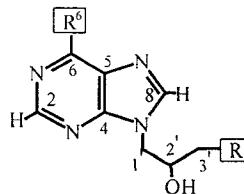
TABLE 3

¹³C NMR chemical shifts (δ /ppm)^a, substituent induced chemical shifts (SCS/ppm)^b and one-bond C-H coupling constants (J /Hz)^c for 6PyPu^b and compounds **1-4**.

1-3**4**

COMP.		6PyPu ^b	1	2^d	3	4^d
C-2	δ	152.03	152.77	152.16	151.98	151.96
	SCS		0.08	0.13	0.18	-0.07
	J	205.4	198.7	206.3		206.0
C-4	δ	146.59	149.83	146.77	149.40	146.70
	SCS		-0.67	0.18	1.31	0.11
C-5	δ	121.18	118.61	121.26	130.90	121.35
	SCS		-0.16	0.12	1.34	0.17
C-6	δ	154.50	156.10	153.61	152.38	153.57
	SCS		-0.06	-0.89	-2.03	-0.93
C-8	δ	144.34	140.97	146.12	147.86	146.39
	SCS		1.74	1.78	1.35	2.05
	J	212.8	211.7	215.2		214.8
C-1'	δ	-	44.44	44.92	45.20	43.41
C-2'	δ	-	49.66	49.55	49.7	68.36
C-3'	δ	-	45.11	45.21	45.24	71.21
C-4'	δ	-	-	-	-	50.26
C-5'	δ	-	-	-	-	43.41

^aDMSO-*d*₆ solution, chemical shifts referred to TMS.


^bSCS for compound **1** referred to adenine, **2** and **4** to 6-(*N*-pyrrolyl)purine (6PyPu) and **3** to 6-chloropurine.

^cDoublet for C-2, while for C-8 doublet of triplet, digital resolution \pm 0.7 Hz.

^dChemical shifts for pyrrolo moiety: C-2",5" at 120.3 ppm and C-3",4" at 112.7 ppm for **2** and **4**.

TABLE 4

¹³C NMR chemical shifts (δ /ppm)^a, substituent induced chemical shifts (SCS/ppm)^b and one-bond C-H coupling constants (J /Hz)^c for compounds **5-11** (c.f. SCHEME).

5-11

COMP.		5	6	7d	8d	9d	10	11
C-2	δ	152.61	152.53	151.87	151.80	151.78	152.13	152.61
	SCS	-0.08	-0.16	-0.15	-0.23	-0.25	-0.48	0.08
	J			206.0	206.5	206.0		
C-4	δ	149.98	149.9	146.60	146.58	146.56	150.31	149.24
	SCS	-0.52	-0.60	-0.03	0.00	0.03	0.33	-0.66
C-5	δ	118.80	118.7	121.40	121.26	121.28	119.22	119.09
	SCS	0.03	0.00	0.22	0.08	0.10	0.42	0.39
C-6	δ	156.21	156.23	153.76	153.76	153.70	153.84	154.16
	SCS	0.05	0.07	-0.74	-0.74	-0.80	-2.37	-2.07
C-8	δ	141.95	141.91	146.84	146.80	146.76	139.80	141.45
	SCS	2.82	2.78	2.50	2.46	2.42	-2.15	-0.46
C-1'	δ	56.27	47.38	48.20	47.94	48.06	47.33	46.77
C-2'	δ	66.28	68.25	66.27	68.14	66.95	65.26	65.39
C-3'	δ	47.55	50.47	56.42	50.53	54.10	56.25	47.37
C-4'	δ	47.30	48.38	47.26	48.38	59.51	48.31	49.95
C-5'	δ	10.67	22.68	10.94	22.76	23.03	42.88	22.52

^aDMSO-*d*₆ solution, chemical shifts referred to TMS.

^bSCS for **5** and **6** referred to adenine, for **7**, **8** and **9** to 6-PyPu, while for **10** to **5** and for **11** to **6**.

^cDoublet for C-2, while for C-8 doublet of triplet. Digital resolution ± 0.7 Hz.

^dSignals for pyrrolo moiety: C-2",5" at *ca.* 120.30 ppm and C-3",4" at *ca.* 112.61 ppm for **7**, **8** and **9**.

In compound **2** signals of the C-1' (NCH₂) and C-3' (oxirane OCH₂ group) are very close, while in **4** corresponding signals (C-1' and C-5') are even overlapped. However, they were distinguished on the basis of the difference in magnitude of their one-bond C-H coupling. Thus, one-bond C-H coupling for NCH₂ is *ca.* 142 Hz, while it is even *ca.* 177 Hz for the oxirane OCH₂ group.

In **5-9** (TABLE 4) the greatest substituent effect was observed at the C-8, like it is in **1-4**. Great differences of SCS at the C-8 in **10** and **11** could be related to different influence of the corresponding substituents at the N-9 and, the N-6 positions, as it was already discussed for ¹H NMR spectra. As expected the greatest substituent effect in **10** and **11** was observed at the C-6, which was one bond apart from the attached substituent. The lowest SCS in **5-11** were observed for the C-2 and the C-5.

CONCLUSIONS

The structure of purine nucleoside analogues containing 2,3-epoxypropyl (glycidyl) (**1-4**), 3-diethylamino-2-hydroxypropyl (**5** and **7**), 2-hydroxy-3-isopropylaminopropyl (**6** and **8**) and 2-hydroxy-3-(*N*-pyrrolidinyl)propyl (**9**) groups in side-chains was determined by ¹H and ¹³C NMR spectroscopy. The analysis performed in terms of chemical and substituent shifts, H-H and C-H coupling constants and connectivities in COSY, NOESY and HETCOR spectra showed that purine derivatives are substituted either at the N-9 (in **1-9**) or both at N-9 and N-6 (in **10** and **11**).

ACKNOWLEDGEMENT

Support of this study by the Ministry of Science of Croatia (Projects # 175.003 and # 00980802) is gratefully acknowledged.

REFERENCES

1. De Clercq E., In Search of a Selective Antiviral Chemotherapy. *Clinical Microbiology Reviews*, 1997; 10: 674-693.
2. Fisher H., Möller H., Budnowski M., Atassi G., Dumont P., Venditti J. and Yoder O.C., Investigation of the Antitumor Activity of New Epoxide Derivatives. *Arzneim-Forsch./Drug Res.*, 1984; 34: 663-668.
3. Najem L. and Borredon M.E., Single Step Etherification of Fatty Alcohols by an Epihalohydrin. *Synth. Commun.*, 1994; 24: 3021-3030.
4. Raić S., Pongračić M., Vorkapić-Furač J., Vikić-Topić D., Hergold-Brundić A., Nagl A. and Mintas M., The Novel 6-(*N*-Pyrrolyl)purine Acyclic Nucleosides: ^1H and ^{13}C NMR and X-Ray Structural Study. *Nucleosides & Nucleotides*. 1996; 15: 937-959.
5. Raić S., Mintas M., Danilovski A., Vinković M., Pongračić M., Plavec J. and Vikić-Topić D., Acyclic Purine Nucleoside Analogues: Computational and NMR Studies of Conformational Behaviour. *J. Mol. Struct.*, 1997; 410/411: 31-33.
6. Pongračić M., Raić S., Vikić-Topić D. and Mintas M., Acyclic Analogues of Purine Nucleosides with Dimethylaminoethyl and Dimethylaminoethoxyalkyl Side Chains: Preparation, One- and Two-dimensional ^1H and ^{13}C NMR Studies. *Croat. Chem. Acta*, 1997; 70: 1047-1062.
7. Raić-Malić S., Grdiša M., Pavelić K. and Mintas M., Synthesis and Biological Evaluation of the Novel Purine and Pyrimidine Nucleoside Analogues Containing 2,3-Epoxypropyl, 3-Amino-2-Hydroxypropyl or 2,3-Epoxypropyl Ether Moiety. *Eur. J. Med. Chem.*, 1998, submitted.

Date Received: November 9, 1998

Date Accepted: April 10, 1999